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Introduction

Consider the following (Stratonovich) stochastic differential equation,

dyt = f(yt)dt+
d∑

i=1

g i(yt) ◦ dW i
t , (1)

where f, g i : Rn → Rn are smooth and bounded vector fields on Rn

and W = {Wt} denotes a standard d-dimensional Brownian motion.

SDEs can model random time-evolving systems and have applications
ranging from finance [1] to statistical physics and machine learning [2].

The noise terms are often “tractable” (e.g. affine noise g i(y) = Aiy+Bi).
As we expect numerical error to primary come from these noise terms,
this provides good motivation to investigate splitting methods for SDEs.
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A simple example: the CIR Model

The Cox-Ingersoll-Ross (CIR) model [1] is defined by the following SDE:

dyt = a(b− yt)dt+ σ
√
yt dWt , (2)

with the following parameters

• Mean reversion speed: a > 0

• Mean reversion level: b > 0

• Volatility: σ > 0

This diffusion is commonly used as a one-factor short rate model in
mathematical finance for modelling interest rates and volatilities [3].
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A simple example: the CIR Model

The Cox-Ingersoll-Ross (CIR) model [1] is defined by the following SDE:

dyt = a(b− yt)dt+ σ
√
yt dWt , (2)

with the following parameters

• Mean reversion speed: a > 0

• Mean reversion level: b > 0

• Volatility: σ > 0

This diffusion is commonly used as a one-factor short rate model in
mathematical finance for modelling interest rates and volatilities [3].

Note the ODEs, dydt = a(b− y) and dy
dt = c√y, can be solved analytically!
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A simple example: the CIR Model
Lie-Trotter splitting

Y (1)
k := Drift(Yk , h) = e−ahYk + b̃

(
1− e−ah

)
,

Yk+1 := Noise(Y (1)
k ,Wk) =

(√
Y (1)
k +

1

2
σWk

)2
,

where h > 0 denotes the step size andWk := Wtk+1
−Wtk ∼ N (0, h)

is the increment of the Brownian motion. This has O(h) convergence.
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Y (1)
k := Drift(Yk , h) = e−ahYk + b̃

(
1− e−ah

)
,

Yk+1 := Noise(Y (1)
k ,Wk) =

(√
Y (1)
k +

1

2
σWk

)2
,

where h > 0 denotes the step size andWk := Wtk+1
−Wtk ∼ N (0, h)

is the increment of the Brownian motion. This has O(h) convergence.

Strang splitting

Y (1)
k := Drift

(
Yk ,

1

2
h
)
,

Y (2)
k := Noise

(
Y (1)
k ,Wk

)
,

Yk+1 := Drift
(
Y (2)
k ,

1

2
h
)
,

has O(h) strong convergence, but O(h2) weak convergence (see [4]).
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Strang splitting
More generally, we can define a Strang splitting for Stratonovich SDEs as

Yk+1 := exp
(
1

2
f(·)h

)
exp

( d∑
i=1

g i(·)W i
k

)
exp

(
1

2
f(·)h

)
Yk ,

where exp(V)x is the solution z(1) at u = 1 of z ′ = V(z) with z(0) = x.
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Strang splitting as a piecewise linear path
More generally, we can define a Strang splitting for Stratonovich SDEs as

Yk+1 := exp
(
1

2
f(·)h

)
exp

( d∑
i=1

g i(·)W i
k

)
exp

(
1

2
f(·)h

)
Yk ,

where exp(V)x is the solution z(1) at u = 1 of z ′ = V(z) with z(0) = x.

Key idea: This is just solving (1) with the Brownian motion {(t,Wt)}t≥0 ,

replaced by the following piecewise linear path X = {(Xτ ,Xω)} in R1+d,

 

𝑊𝑘  

1

2
ℎ ℎ 
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Stochastic Taylor expansion

Informal Theorem (Taylor expansion for additive noise SDEs)
Let y be the unique solution to (1), with g(y) = σ ∈ R. Then for s < t,

yt = ys +
∫ t

s
f(yu)du+

∫ t

s
σ ◦ dWu ,

where h = t− s and the O
(
h

5
2

)
term is understood in an L2(P) sense.
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Let y be the unique solution to (1), with g(y) = σ ∈ R. Then for s < t,

yt = ys +
∫ t

s
f(ys)du+

∫ t

s

(
f(yu)− f(ys)

)
du+

∫ t

s
σ ◦ dWu ,

= ys + f(ys)(t− s) +
∫ t

s

∫ u

s
f ′(yv) ◦ dyv︸︷︷︸

= f(yv) dv+σ ◦ dWv

du+ σWs,t ,

where h = t− s and the O
(
h

5
2

)
term is understood in an L2(P) sense.
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= f(yv) dv+σ ◦ dWv

du+ σWs,t ,

...

yt = ys + f(ys)h+ σWs,t + f ′(ys)σ
∫ t

s
Ws,u du+

1

2
f ′(ys) f(ys)h2

+
1

2
f ′′(ys)σ2

∫ t

s
W⊗2
s,u du+ O

(
h

5
2
)
,

where h = t− s and the O
(
h

5
2

)
term is understood in an L2(P) sense.
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A “rough path” approach to splitting methods

Informal Theorem (Stochastic Taylor expansion [5, Thm 5.6.1])
The solution of the SDE (1) can be expressed as

yt ≈ ys + f(ys)h+

d∑
i=1

g i(ys)W i
s,t +

d∑
i, j=1

(
· · ·
) ∫ t

s
W i
s,u ◦ dW

j
u (3)

+
(
· · ·
) ∫ t

s
Ws,u du+

(
· · ·
) ∫ t

s
(u− s)dWu +

(
· · ·
)
h2

+
(
· · ·
)(
“third” iterated integrals of {t,Wt}

)
+
(
· · ·
)(
“fourth” iterated integrals ofW

)
,

where h = t− s and Ws,u := Wu −Ws.
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The solution of the SDE (1) can be expressed as

yt ≈ ys + f(ys)h+

d∑
i=1

g i(ys)W i
s,t +

d∑
i, j=1

(
· · ·
) ∫ t

s
W i
s,u ◦ dW

j
u (3)

+
(
· · ·
) ∫ t

s
Ws,u du+

(
· · ·
) ∫ t

s
(u− s)dWu +

(
· · ·
)
h2

+
(
· · ·
)(
“third” iterated integrals of {t,Wt}

)
+
(
· · ·
)(
“fourth” iterated integrals ofW

)
,

where h = t− s and Ws,u := Wu −Ws.

Observation from rough path theory
The Taylor expansion (3) can be extended beyond Brownian motion.
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A “rough path” approach to splitting methods
By replacing (t,Wt) with a path X = (Xτ ,Xω) : [0, 1] → R1+d, we obtain

dYt = f(Yt)dXτ
t +

d∑
i=1

g i(Yt)d
(
Xω
t
)i
. (4)

Informal Theorem (Rough Taylor expansion [6, Proposition 3.2])
The solution of the controlled differential equation (4) is expressible as

Y1 ≈ Y0 + f(Y0)Xτ
1 +

d∑
i=1

g i(Y0)
(
Xω
1

)i
+

d∑
i, j=1

(
· · ·
) ∫ 1

0

(
Xω
t
)id(Xω

t
)j

+
(
· · ·
) ∫ 1

0
Xω
t dXτ

t +
(
· · ·
) ∫ 1

0
Xτ
t dXω

t +
(
· · ·
)(
Xτ
1

)2
+
(
· · ·
)(
“third” iterated integrals of {Xτ ,Xω}

)
+
(
· · ·
)(
“fourth” iterated integrals of Xω

)
.
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A “rough path” approach to splitting methods
For Y to accurately approximate y, we will construct the path X so that

X1 =
(
h,Ws,t

)
,∫ 1

0
Xω
t dXτ

t =

∫ t

s
Ws,u du,

E
[ ∫ 1

0

(
Xω
t
)⊗2 dXτ

t

]
= E

[ ∫ t

s
W⊗2
s,u du

]
.

Two examples of such piecewise linear paths X are illustrated below:
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Establishing moment bounds for the approximation

Key assumption (Brownian-like scaling)
Let X = (Xτ ,Xω)T : [0, 1] → R1+d be a piecewise linear path withm ∈ N
components of a.s. finite length. Suppose each piece, Xri ,ri+1

, satisfies

• Xτ is deterministic and scales with the step size h, i.e. Xτ
ri ,ri+1

= O(h)

• Even moments of Xω scale with h, i.e. E
[
∥Xω

ri ,ri+1
∥2k
]
= O(hk)
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Establishing moment bounds for the approximation

Key assumption (Brownian-like scaling)
Let X = (Xτ ,Xω)T : [0, 1] → R1+d be a piecewise linear path withm ∈ N
components of a.s. finite length. Suppose each piece, Xri ,ri+1

, satisfies

• Xτ is deterministic and scales with the step size h, i.e. Xτ
ri ,ri+1

= O(h)

• Even moments of Xω scale with h, i.e. E
[
∥Xω

ri ,ri+1
∥2k
]
= O(hk)

Theorem (Moment bounds on the CDE solution)
Suppose that E

[
∥Y0∥4

]
< ∞ and the vector fields f, g have linear growth:

∥f(Y)∥ ≤ C(1 + ∥Y∥), ∥g(Y)∥ ≤ C(1 + ∥Y∥),

with E
[
exp

(
16C

∫ 1
0 |dXu|

)]
< ∞. Then there exists C̃ so that for r ∈ [0, 1]

E
[
∥Yr − Y0∥4

]
≤ C̃h2

(
1 + E

[
∥Y0∥4

])
. (5)
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Main result: Error analysis for path-based splitting
Theorem (Convergence rates of splitting schemes [6, Thm 3.9])
Consider the Stratonovich SDE on [0, T],

dyt = f(yt)dt+
d∑

i=1

g i(yt) ◦ dW i
t , (6)

where f ∈ C2(Rn), g i ∈ C3(Rn) have Lipschitz continuous derivatives and

g ′
i (y)g j(y) = g ′

j (y)g i(y), ∀y ∈ Rn. (7)

Let φ denote a map on the space of continuous R1+d-valued paths such
that X = φ

(
{(u,Wu)}u∈[s,t]

)
is a piecewise linear path on [0, 1] satisfying

X0,1 = (h,Ws,t),
∫ 1
0 X

ω
0,r dXτ

r =
∫ t
s Ws,u du,

E
[ ∫ 1

0 (X
ω
0,r)

⊗2 dXτ
r
]
= 1

2h
2Id , “Brownian-like scaling”,

(8)

almost surely, where “Brownian-like scaling” refers to the previous slide.
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Main result: Error analysis for path-based splitting
Theorem (Convergence rates of splitting schemes, continued)
We define a numerical solution Y by Y0 := y0 and for k ∈ {0, · · ·,N− 1},

Yk+1 := exp
(
f(·)Xτ

1,tm + g(·)Xω
1,tm

)
· · · exp

(
f(·)Xτ

0,t1 + g(·)Xω
0,t1

)
Yk , (9)

where each piecewise linear path X has m ≥ 1 joints at {t1 < · · · < tm}
and is constructed from {(t,Wt)}t∈[kh,(k+1)h] using a step size of h = T

N .
In (9), exp(V)x denotes the solution at time u = 1 of

z ′ = V(z),
z(0) = x.

Then there exists constants CY,hmax > 0, not depending on N, such that

E
[
∥Yk − ykh∥22

] 1
2 ≤ CYh

3
2 , (10)

for k ∈ {1, · · · ,N} whenever h ≤ hmax .
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A higher order Strang splitting
Definition (Space-time Lévy area of Brownian motion)
We define (rescaled) space-time Lévy area of W over an interval [s, t] as

Hs,t :=
1

h

∫ t

s
Ws,u du− 1

2
Ws,t .

 

 

 

 

= ℎ𝐻𝑠,𝑡 

𝑊𝑡 

𝑊𝑠 

𝑠 𝑡 

Theorem (Distribution of increments and space-time Lévy areas)
The vectors Ws,t ∼ N (0,hId) and Hs,t ∼ N (0, 1

12hId) are independent.
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A higher order Strang splitting

We replace the Brownian motion with the following piecewise linear path:

1

2
𝑊𝑘 + ξ3𝐻𝑘 

1

2
𝑊𝑘 − ξ3𝐻𝑘 

3 − ξ3

6
ℎ 

ξ3

3
ℎ 

3 − ξ3

6
ℎ 

 

 𝔼 [ ∫ 𝑋𝑡
2 𝑑𝑡 

1

0

] = 𝔼 [ ∫ 𝑊𝑡
2 𝑑𝑡

𝑡𝑘+1

𝑡𝑘

 ] 
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Example: CIR Model

In Stratonovich form, the CIR model (2) becomes

dyt = a(b̃− yt)dt+ σ
√
yt ◦ dWt , (11)

where b̃ := b− 1
4aσ

2. Thus, our splitting requires σ2 ≤ 4ab and becomes

Y (1)
k := e−

3−
√

3
6

ahYk + b̃
(
1− e−

3−
√

3
6

ah),
Y (2)
k :=

(√
Y (1)
k +

σ

2

(1
2
Wk +

√
3Hk

))2

,

Y (3)
k := e−

√
3

3
ahY (2)

k + b̃
(
1− e−

√
3

3
ah),

Y (4)
k :=

(√
Y (3)
k +

σ

2

(1
2
Wk −

√
3Hk

))2

,

Yk+1 := e−
3−

√
3

6
ahY (4)

k + b̃
(
1− e−

3−
√

3
6

ah). (12)
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Example: CIR Model (all parameters set to 1)

 

Table: Computer time to simulate 100,000 paths with 100 steps (seconds)

Splitting Ninomiya-Victoir Drift-Implicit Euler Milstein Euler
2.13 1.07 1.42 1.01 0.86
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Example: CIR Model (all parameters set to 1)

Hence, the proposed splitting method is significantly more accurate!

Table: Estimated time to produce 106 paths with a RMSE of 10−3 (seconds)

Splitting Ninomiya-Victoir Drift-Implicit Euler Milstein Euler
0.27 1.99 4.17 3.69 490
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Example: CIR Model (all parameters set to 1)

Hence, the proposed splitting method is significantly more accurate!

Table: Estimated time to produce 106 paths with a RMSE of 10−3 (seconds)

Splitting Ninomiya-Victoir Drift-Implicit Euler Milstein Euler
0.27 1.99 4.17 3.69 490

Moreover, as 1
2Wk +

√
3Hk and 1

2Wk −
√
3Hk are independent, we have

Theorem
The numerical solution given by (12) has the following moments:

E[Yk+1|Yk] = e−ahYk + b
(
1− e−ah

)
+ O(h5),

Var(Yk+1|Yk) =
σ2

a
(
e−ah − e−2ah)Yk + bσ2

2a
(
1− e−ah

)2
+ O(h5).
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Example: FitzHugh-Nagumo Model

The stochastic FitzHugh-Nagumo (FHN) model [9] is given by the SDE:

d

(
Vt
Ut

)
=

(
1
ϵ

(
Vt − V 3

t − Ut
)

γVt − Ut + β

)
dt+

(
σ1 0

0 σ2

)
dWt. (13)

with the following parameters

• Time scale separation: ϵ > 0

• Position parameter of an excitation: β ≥ 0

• Duration parameter of an excitation: γ > 0

• Noise parameters: σ1, σ2 ≥ 0

The FHN model is used to describe the firing activity of single neurons.
The first component V describes the membrane voltage of the neuron,
whilst the second component U can be viewed as a recovery variable.
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Example: FitzHugh-Nagumo Model

We replace each Brownian motion by the following piecewise linear path:

+ 𝐶𝑘 

− 𝐶𝑘 

1

2
ℎ 

1

2
𝑊𝑘 + 𝐻𝑘 

1

2
𝑊𝑘 − 𝐻𝑘 

ℎ 

 

∫ 𝑋𝑡
2 𝑑𝑡

1

0

= 𝔼 [ ∫ 𝑊𝑡
2 𝑑𝑡

𝑡𝑘+1

𝑡𝑘

   𝑊𝑘 , 𝐻𝑘 , 𝑛𝑘] | 

(nk ∈ {−1, 1} is independent and gives the half-interval with largest H)
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FitzHugh-Nagumo Model (parameters set to 1, T = 5)
The system cannot be exactly solved along the “horizontal” pieces, so
we apply a further Strang splitting to approximate the resulting ODEs.

 

With 640 steps, we’re as accurate as Strang splitting with 10,240 steps!
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Conclusion and future work

Conclusion

• Path-based framework for developing high order splitting methods

• Flexible and can exploit new approximation theory for SDEs [7, 11]

• Able to produce methods with state-of-the-art convergence rates

Future work

• Application to high-dimensional SDEs used in machine learning
(such as Langevin dynamics [2, 12])

• Application to more general SDEs (i.e. not additive or scalar noise)

• Incorporating (W,H, · )-based methods into Multilevel Monte Carlo
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Thank you
for your attention!

and our preprint can be found at:

J. Foster, G. dos Reis and C. Strange, High order splitting methods for
SDEs satisfying a commutativity condition, arxiv:2210.17543, 2022.
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