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Introduction

Ordinary Differential Equations (ODEs) have seen widespread use for
modelling continuous-time systems. However, they are deterministic.

So for modelling random phenomena, noise terms can be incorporated
into ODEs. This leads us to Stochastic Differential Equations (or SDEs).

In this talk, we will consider SDEs defined by Stratonovich integration1,

dyt = f(yt)dt+
d∑

i=1

g i(yt) ◦ dW i
t , (1)

where f, g i : Re → Re are smooth and bounded vector fields on Re

and each W i = {W i
t}t≥0 denotes an independent Brownian motion.

1The twomost common types of stochastic integration are “Itô” and “Stratonovich”.
The good news is that we can convert between them by changing the drift function [1].
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Introduction
For many SDEs in applications, such as finance [2], statistical physics
and machine learning [3], we use numerical methods to simulate (1).

This is often done using Monte Carlo simulation. That is, we first
sample our noise (which is Gaussian) and then discretise the SDE.

When the noise due to Brownian motion is included, the standard
Euler’s method for ODEs becomes the Euler-Maruyama method:

Yn+1 := Yn + f(Yn)hn +
d∑

i :=1

g i(Yn)W i
n ,

where Y0 := y0 is the initial value, hn := tn+1 − tn is the step size and

W i
n := W i

tn+1
−W i

tn ∼ N (0,hn)

is an independent Gaussian random variable. We expect Yn ≈ y(tn).
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Introduction

The numerical methods we propose in [4] come from classical ideas.

Idea 1:

SDEs and their numerical methods can be viewed as functions on paths.

  

 

(Discretized) SDE Solution (Discretized) Brownian motion 

Numerical 

Method 

Idea 2:

Noise terms are often “tractable” (e.g. affine noise g i(y) = Aiy+ Bi).
That is, without any drift vector field, we can solve the system exactly
(or approximate it very well). This leads us to study splitting methods.
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A motivating example: the CIR Model

The Cox-Ingersoll-Ross (CIR) model [2] is defined by the following SDE:

dyt = a(b− yt)dt+ σ
√
yt dWt , (2)

with the following parameters

• Mean reversion speed: a > 0

• Mean reversion level: b > 0

• Volatility: σ > 0

This diffusion is commonly used as a one-factor short rate model in
mathematical finance for modelling interest rates and volatilities [5].

Note the ODEs, dydt = a(b− y) and dy
dt = σ

√y, can be solved analytically!
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A motivating example: the CIR Model

 

𝑡 

𝑦𝑡  

Figure: Sample paths of the CIR model with a = b = 1 and σ = 2.
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A motivating example: the CIR Model
Lie-Trotter splitting

Y (1)
n := Drift(Yn , h) = e−ahYn + b̃

(
1− e−ah

)
,

Yn+1 := Noise(Y (1)
n ,Wn) =

(√
Y (1)
n +

1

2
σWn

)2
,

where h > 0 denotes the step size andWn := Wtn+1 −Wtn ∼ N (0, h)
is the increment of the Brownian motion. This has O(h) convergence.

Strang splitting

Y (1)
n := Drift

(
Yn ,

1

2
h
)
,

Y (2)
n := Noise

(
Y (1)
n ,Wn

)
,

Yn+1 := Drift
(
Y (2)
n ,

1

2
h
)
,

has O(h) strong convergence, but O(h2) weak convergence (see [6]).
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Strang splitting as a piecewise linear path
More generally, we can define a Strang splitting for Stratonovich SDEs as

Yn+1 := exp
(
1

2
f(·)h

)
exp

( d∑
i=1

g i(·)W i
n

)
exp

(
1

2
f(·)h

)
Yn ,

where exp(V)x is the solution z(1) at u = 1 of z ′ = V(z) with z(0) = x.

Key idea: This is just solving (1) with the Brownian motion {(t,Wt)}t≥0 ,

replaced by the following piecewise linear path X = {(Xτ ,Xω)} in R1+d,

 

𝑊𝑛 

1

2
ℎ ℎ 
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Stochastic Taylor expansion
Informal Theorem (Taylor expansion for additive noise SDEs)
Let y be the unique solution to (1), with g(y) = σ ∈ R. Then for s < t,

yt = ys +
∫ t

s
f(ys)du+

∫ t

s

(
f(yu)− f(ys)

)
du+

∫ t

s
σ ◦ dWu ,

= ys + f(ys)(t− s) +
∫ t

s

∫ u

s
f ′(yv) ◦ dyv︸︷︷︸

= f(yv) dv+σ ◦ dWv

du+ σWs,t ,

...

yt = ys + f(ys)h+ σWs,t + f ′(ys)σ
∫ t

s
Ws,u du+

1

2
f ′(ys) f(ys)h2

+
1

2
f ′′(ys)σ2

∫ t

s
(Ws,u)

2 du+ Rs,t ,

where h = t− s and Ws,u := Wu −Ws .

In addition, the L2 norm of the remainder Rs,t is E
[
(Rs,t)2

]1/2
= O

(
h

5
2

)
.

James Foster (University of Bath) High order splitting methods for SDEs 23 June 2025 8 / 27



Outline

1 Introduction

2 A path-based approach to splitting methods

3 Convergence analysis and examples

4 Conclusion and future work

5 References



A path-based approach to splitting methods
Informal Theorem (Stochastic Taylor expansion [7, Thm 5.6.1])
The solution of the SDE (1) can be expressed as

yt ≈ ys + f(ys)h+

d∑
i=1

g i(ys)W i
s,t +

d∑
i, j=1

(
· · ·
) ∫ t

s
W i
s,u ◦ dW

j
u (3)

+
(
· · ·
) ∫ t

s
Ws,u du+

(
· · ·
) ∫ t

s
(u− s)dWu +

(
· · ·
)
h2

+
(
· · ·
)(
“third” iterated integrals of {t,Wt}

)
+
(
· · ·
)(
“fourth” iterated integrals ofW

)
,

where h = t− s and Ws,u := Wu −Ws.

Observation from rough path theory
The Taylor expansion (3) can be extended beyond Brownian motion.
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A path-based approach to splitting methods
By replacing (t,Wt) with a path X = (Xτ ,Xω) : [0, 1] → R1+d, we obtain

dYt = f(Yt)dXτ
t +

d∑
i=1

g i(Yt)d
(
Xω
t
)i
. (4)

Informal Theorem (Rough Taylor expansion [4, Proposition 3.2])
The solution of the controlled differential equation (4) is expressible as

Y1 ≈ Y0 + f(Y0)Xτ
1 +

d∑
i=1

g i(Y0)
(
Xω
1

)i
+

d∑
i, j=1

(
· · ·
) ∫ 1

0

(
Xω
t
)id(Xω

t
)j

+
(
· · ·
) ∫ 1

0
Xω
t dXτ

t +
(
· · ·
) ∫ 1

0
Xτ
t dXω

t +
(
· · ·
)(
Xτ
1

)2
+
(
· · ·
)(
“third” iterated integrals of {Xτ ,Xω}

)
+
(
· · ·
)(
“fourth” iterated integrals of Xω

)
.
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A path-based approach to splitting methods
For Y to accurately approximate y, we will construct the path X so that

X1 =
(
h,Ws,t

)
,∫ 1

0
Xω
t dXτ

t =

∫ t

s
Ws,u du,

E
[ ∫ 1

0

(
Xω
t
)2 dXτ

t

]
= E

[ ∫ t

s
(Ws,u)

2 du
]
.

Two examples of such piecewise linear paths X are illustrated below:
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Establishing moment bounds for the approximation

Key assumption (Brownian-like scaling)
Let X = (Xτ ,Xω)T : [0, 1] → R1+d be a piecewise linear path withm ∈ N
components of a.s. finite length. Suppose each piece, Xri ,ri+1

, satisfies

• Xτ is deterministic and scales with the step size h, i.e. Xτ
ri ,ri+1

= O(h)

• Even moments of Xω scale with h, i.e. E
[
∥Xω

ri ,ri+1
∥2k
]
= O(hk)

Theorem (Moment bounds for the system (4) driven by X)
Suppose that E

[
∥Y0∥4

]
< ∞ and the vector fields f, g have linear growth:

∥f(Y)∥ ≤ C(1 + ∥Y∥), ∥g(Y)∥ ≤ C(1 + ∥Y∥),

with E
[
exp

(
16C

∫ 1
0 |dXu|

)]
< ∞. Then there exists C̃ so that for r ∈ [0, 1]

E
[
∥Yr − Y0∥4

]
≤ C̃h2

(
1 + E

[
∥Y0∥4

])
. (5)
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Main result
Theorem (Convergence of path-based splitting [4, Thm 3.9])
Consider the Stratonovich SDE on [0, T],

dyt = f(yt)dt+
d∑

i=1

g i(yt) ◦ dW i
t , (6)

where f ∈ C2
Lip(R

e), g i ∈ C3
Lip(R

e) have Lipschitz continuous derivatives
and

g ′
i (y)g j(y) = g ′

j (y)g i(y), ∀y ∈ Re. (7)

Let φ be a map on the space of continuous R1+d-valued paths such that
X = φ

(
{(u,Wu)}u∈[s,t]

)
is a piecewise linear path on [0, 1] which satisfies

X0,1 = (h,Ws,t),
∫ 1
0 X

ω
0,r dXτ

r =
∫ t
s Ws,u du,

E
[ ∫ 1

0 (X
ω
0,r)

⊗2 dXτ
r
]
= 1

2h
2Id , “Brownian-like scaling”,

(8)

almost surely, where “Brownian-like scaling” refers to the previous slide.
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Main result
Theorem (Convergence of path-based splitting [4, Thm 3.9])
We define a numerical solution Y by Y0 := y0 and for n ∈ {0, · · ·,N− 1},

Yn+1 := exp
(
f(·)Xτ

1,rm + g(·)Xω
1,rm

)
· · · exp

(
f(·)Xτ

0,r1 + g(·)Xω
0,r1

)
Yn , (9)

where each piecewise linear path X has m joints at {r1 < · · · < rm} and
is defined by {(t,Wt)}t∈[tn,tn+1] using a step size of h = T

N with tn := nh.

In (9), exp(V)x is the solution at time u = 1 of

z ′ = V(z),
z(0) = x.

Then there exists constants CY,hmax > 0, not depending on N, such that

E
[
∥Yn − ytn∥22

] 1
2 ≤ CYh

3
2 , (10)

for n ∈ {1, · · · ,N}, provided that h ≤ hmax .
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Generating Brownian increments and integrals
Definition (Space-time Lévy area of Brownian motion)
We define (rescaled) space-time Lévy area of W over an interval [s, t] as

Hs,t :=
1

h

∫ t

s
Ws,u du− 1

2
Ws,t , (where h = t− s).

 

 

 

 

= ℎ𝐻𝑠,𝑡 

𝑊𝑡 

𝑊𝑠 

𝑠 𝑡 

Theorem (Brownian increments and space-time Lévy areas [8])
The vectors Ws,t ∼ N (0, hId) and Hs,t ∼ N (0, 1

12hId) are independent.
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A higher order Strang splitting

We replace the Brownian motion with this piecewise linear path in R2:

𝑋𝑡 

 

3 − ξ3

6
ℎ 

1

2
𝑊𝑛 + ξ3𝐻𝑛 

1

2
𝑊𝑛 − ξ3𝐻𝑛 

ξ3

3
ℎ 

3 − ξ3

6
ℎ 

 𝔼 ቈ න ሺ𝑋𝑡ሻ2 𝑑𝑡 
1

0

቉ = 𝔼 ቈ න ሺ𝑊𝑡ሻ2 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

 ቉ 
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Example: CIR Model

In Stratonovich form, the CIR model (2) becomes

dyt = a(b̃− yt)dt+ σ
√
yt ◦ dWt , (11)

where b̃ := b− 1
4aσ

2. Thus, our splitting requires σ2 ≤ 4ab and becomes

Y (1)
n := e−

3−
√

3
6

ahYn + b̃
(
1− e−

3−
√
3

6
ah),

Y (2)
n :=

(√
Y (1)
n +

σ

2

(1
2
Wn +

√
3Hn

))2

,

Y (3)
n := e−

√
3

3
ahY (2)

n + b̃
(
1− e−

√
3

3
ah),

Y (4)
n :=

(√
Y (3)
n +

σ

2

(1
2
Wn −

√
3Hn

))2

,

Yn+1 := e−
3−

√
3

6
ahY (4)

n + b̃
(
1− e−

3−
√
3

6
ah). (12)
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Example: CIR Model (all parameters set to 1)

 

Table: Estimated time to produce 106 paths with a RMSE of 10−3 (seconds)

Splitting Ninomiya-Victoir Drift-Implicit Euler Milstein Euler
0.27 1.99 4.17 3.69 490
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Example: Underdamped Langevin Dynamics

The underdamped Langevin diffusion (ULD) is a model for molecular
dynamics and is given by the stochastic differential equation (SDE):

dxt = vt dt, (13)

dvt = −γvt dt−∇f(xt)dt+
√

2γ dWt ,

where
• x, v ∈ Rd will represent the position andmomentum of a particle.

• f : Rd → R is a scalar potential that the particle moves around in.

• γ > 0 is the friction coefficient (we will use γ = 1).

• W = (W 1, · · · ,W d) is a d-dimensional Brownian motion,

W i
t −W i

s ∼ N (0, t− s).
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Example: Underdamped Langevin Dynamics

“ULD = Newton’s second law + frictional forces + stochastic forces”
dxt = vt dt,

dvt = −γvt dt︸ ︷︷ ︸
friction

− ∇f(xt)dt︸ ︷︷ ︸
gradient of the
potential / target

+
√

2γ dWt︸ ︷︷ ︸
noise

,

Under mild assumptions on f, the SDE admits a unique strong solution
that is ergodic with stationary distribution π(x, v) ∝ e− f(x)e−

1
2
∥v∥2 [10].

So, as well as physics [11], ULD can be applied to (high-dimensional)
sampling problems in data science [12], as simulating ULD for long
times produces approximate samples from the target distribution:

π(x) ∝ e− f(x).

Thus, solving (13) gives a Markov Chain Monte Carlo (MCMC)
algorithm.
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Underdamped Langevin Dynamics, f(x) = 1
4(x

2 − 4)2

 

𝑡 

𝑥𝑡 

𝑥 

𝜋(𝑥) 
Samples 
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Example: Underdamped Langevin Dynamics

For simulating this specific SDE, we use another piecewise linear path:

−𝐻𝑛 + 6𝐾𝑛 

ℎ 

 

𝐻𝑛 + 6𝐾𝑛 

𝑊𝑛 − 12𝐾𝑛 

where Kn ∼ N
(
0, 1

720hId
)
is independent of (Wn ,Hn) and defined as

Kn :=
1

h2

∫ tn+1

tn

(
Wtn ,t −

t− tn
h

Wn

)(
1

2
h− (t− tn)

)
dt.

James Foster (University of Bath) High order splitting methods for SDEs 23 June 2025 22 / 27



Example: Underdamped Langevin Dynamics

 

∝ 𝐾𝑛 

Brownian motion with 𝑊𝑛 = 0 and 𝐻𝑛 = 0 

Cubic polynomial approximation 

Figure: Space-time-time Lévy area gives the “skew” of the Brownian path [13].
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Example: Underdamped Langevin Dynamics

Remarkably, due to ULD’s structure, this has third order convergence!

 

Figure: Estimated convergence rates for different ULD numerical methods [4].
Here, the L2 error (or root mean square error) is estimated at time T = 1000.

SORT2 is a discretisation of the SDE driven by the new piecewise linear path.

2Shifted ODE with Runge-Kutta Three
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Example: Underdamped Langevin Dynamics

An O(h3) error bound (that is independent of T) was shown for the ODE
splitting [13]. But we were unable to extend this to the SORT method.

Recently, we made progress on QUICSORT3 (to appear on arxiv soon):

V(1)
n := Vn +

√
2γ (Hn + 6Kn),

X(1)
n := Xn +

1 − e−aγh

γ
V(1)
n +

e−aγh + aγh − 1

γ2h
Cn ,

X(2)
n := Xn +

1 − e−bγh

γ
V(1)
n −

1 − e−
1
3
γh

γ
∇f

(
X(1)
n

)
h +

e−bγh + bγh − 1

γ2h
Cn ,

V(2)
n := e−γhnV(1)

n −
1

2
e−bγh∇f

(
X(1)
n

)
h −

1

2
e−aγh∇f

(
X(2)
n

)
h +

1 − e−γh

γh
Cn ,

Xn+1 := Xn +
1 − e−γh

γ
V(1)
n −

1 − e−bγh

2γ
∇f

(
X(1)
n

)
h −

1 − e−aγh

2γ
∇f

(
X(2)
n

)
h +

e−γh + γh − 1

γ2h
Cn ,

Vn+1 := V(2)
n −

√
2γ (Hn − 6Kn),

where a = 3−
√

3
6

, b = 3+
√

3
6

and Cn =
√

2γ (Wn − 12Kn) .

3QUadrature Inspired and Contractive Shifted ODE with Runge-Kutta Three
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Example: Underdamped Langevin Dynamics
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(a) Waveform (d = 22)
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(b) Splice (d = 61)
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(c) Isolet (d = 617)

Figure: Here, we performed Bayesian logistic regression across 14 datasets,
with the ULD methods achieving faster convergence compared to the popular
“No U-Turn Sampler” (NUTS) [18] in the two highest dimensional datasets.
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Conclusion and future work
Conclusion
• Path-based framework for developing high order splitting methods
• Effective for the CIR model and underdamped Langevin dynamics

Future work
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(a) Flare Solar (d = 10)
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(b) Splice (d = 61)
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(c) Isolet (d = 617)

Figure: The QUICSORT method was recently implemented in Diffrax [19, 20],
which is a high-performance Python package for simulating ODEs and SDEs.
As a consequence, we can now perform QUICSORT with adaptive step sizes.
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Thank you
for your attention!

and, if you are interested, our paper can be found at

J. Foster, G. dos Reis and C. Strange, High order splitting methods for SDEs
satisfying a commutativity condition, SIAM Journal on Numerical Analysis,
2024. (Preprint is available at arxiv.org/abs/2210.17543).

Python code for our ongoing research into Langevin MCMC is also available at
github.com/andyElking/ThirdOrderLMC
github.com/andyElking/Single-seed_BrownianMotion (adaptive step sizes)

https://arxiv.org/abs/2210.17543
https://github.com/andyElking/ThirdOrderLMC
https://github.com/andyElking/Single-seed_BrownianMotion
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Additional information on the CIR example

Table: Computer time to simulate 100,000 paths with 100 steps (seconds)

Splitting Ninomiya-Victoir Drift-Implicit Euler Milstein Euler
2.13 1.07 1.42 1.01 0.86

Since 1
2Wn +

√
3Hn and 1

2Wn −
√
3Hn are independent, we can prove

Theorem (High order weak approximation of the CIR model)
The numerical solution given by (12) has the following moments:

E[Yn+1|Yn] = e−ahYn + b
(
1− e−ah

)
+ O(h5),

Var(Yn+1|Yn) =
σ2

a
(
e−ah − e−2ah)Yn + bσ2

2a
(
1− e−ah

)2
+ O(h5).

Ignoring the O(h5) remainder terms, the above formulae are precisely
the conditional mean and variance of the CIR model (started at Yn ).
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Example: FitzHugh-Nagumo Model

The stochastic FitzHugh-Nagumo (FHN) model [21] is given by the SDE:

d

(
Vt
Ut

)
=

(
1
ϵ

(
Vt − V 3

t − Ut
)

γVt − Ut + β

)
dt+

(
σ1 0

0 σ2

)
dWt. (14)

with the following parameters

• Time scale separation: ϵ > 0

• Position parameter of an excitation: β ≥ 0

• Duration parameter of an excitation: γ > 0

• Noise parameters: σ1, σ2 ≥ 0

The FHN model is used to describe the firing activity of single neurons.
The first component V describes the membrane voltage of the neuron,
whilst the second component U can be viewed as a recovery variable.
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Example: FitzHugh-Nagumo Model
We replace each Brownian motion by the following piecewise linear path:
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(nk ∈ {−1, 1} is independent and gives the half-interval with largest H)
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FitzHugh-Nagumo Model (parameters set to 1, T = 5)
The system cannot be exactly solved along the “horizontal” pieces, so
we apply a further Strang splitting to approximate the resulting ODEs.

 

With 640 steps, we’re as accurate as Strang splitting with 10,240 steps!
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Example: Additive-noise SDEs

In the paper, we also consider a stochastic FitzHugh-Nagumo model
and additive-noise SDEs:

dyt = f(yt)dt+ σdWt ,

where f : Re → Re denotes a vector field onRe and σ ∈ Re×d is a matrix.
For a general additive-noise SDE, we propose a path with three pieces:
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Example: Additive-noise SDEs
We need to discretize the “diagonal ODE” defined by the middle piece.
Runge-Kutta methods may be a good choice of solver, but which one?∫ 1

0
(A+ Bt)⊗2 dt =

1

4
A⊗2 +

3

4

(
A+

2

3
B
)⊗2

⇒ Ralston’s method is ideal!

(i.e. f is evaluated at 0 and 2
3 )

Thus, we propose

Y (1)
n := Yn + σ

(
1

2
Wn + Hn + Cn

)
,

Y (1)

n+ 2
3

:= Y (1)
n +

2

3

(
f
(
Y (1)
n
)
h− 2σCn

)
,

Y (2)
n+1 := Y (1)

n +
1

4
f
(
Y (1)
n
)
h+

3

4
f
(
Y (1)

n+ 2
3

)
h− 2σCn ,

Yn+1 := Y (2)
n+1 + σ

(
1

2
Wn − Hn + Cn

)
.
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Example: Additive-noise SDEs

In our experiment, we compare against Rößler’s strong 1.5 scheme [?]

Ỹn+ 3
4
:= Yn +

3

4
f(Yn)h+

3

4
σWn +

3

2
σHn ,

Yn+1 := Yn +
1

3
f(Yn)h+

2

3
f
(
Ỹn+ 3

4

)
h+ σWn .

Note that these methods have essentially the same computational cost
(two Gaussian random variables, two vector field evaluations per step).

If we set Cn = 0 and solve the ODE with Euler instead of Ralston, we get

Yn+1 := Yn + f
(
Yn +

1

2
σWn + σHn

)
h+ σWn .

We expect this to be more accurate than the Euler-Maruyama method
(though still first order convergent).
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Example: Additive-noise SDEs
We test these methods on the following scalar anharmonic oscillator:

dyt = sin(yt)dt+ dWt , (y0 = 1, T = 1).

All methods exhibit their expected strong and weak convergence rates,
though the proposed schemes are more accurate (in line with theory).

 

0.38 (2.d.p) 

∥∫ t
s W

2
s,udu−E[
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2
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