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Introduction

Ordinary Differential Equations (ODEs) have seen widespread use for
modelling continuous-time systems. However, they are deterministic.

So for modelling random phenomena, noise terms can be incorporated
into ODEs. This leads us to Stochastic Differential Equations (or SDEs).

In this talk, we will consider SDEs defined by Stratonovich integration?,

d
dy: = flys) dt+ > gilyt) o dWj, @)

(=1

where f, g; : R® — R® are smooth and bounded vector fields on R®
and each W' = {W};>( denotes an independent Brownian motion.

1The two most common types of stochastic integration are “Itd” and “Stratonovich”.
The good news is that we can convert between them by changing the drift function [1].
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Introduction

For many SDEs in applications, such as finance [2], statistical physics
and machine learning [3], we use numerical methods to simulate (1).

This is often done using Monte Carlo simulation. That is, we first
sample our noise (which is Gaussian) and then discretise the SDE.

When the noise due to Brownian motion is included, the standard
Euler’s method for ODEs becomes the Euler-Maruyama method:

d

Vo1 =Y+ f(Y)hn + > gi Ya)Ws
(=1

where Yy := yg is the initial value, hj, := t,41 — t, is the step size and
Wi =W — Wi ~N(0,hy)

is an independent Gaussian random variable. We expect Y, = y(ty).
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Introduction

The numerical methods we propose in [4] come from classical ideas.
Idea 1:

SDEs and their numerical methods can be viewed as functions on paths.

Numerical
Method

(Discretized) Brownian motion (Discretized) SDE Solution

Idea 2:

Noise terms are often “tractable” (e.g. affine noise g;(y) = A;y + Bj).
That is, without any drift vector field, we can solve the system exactly
(or approximate it very well). This leads us to study splitting methods.
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A motivating example: the CIR Model

The Cox-Ingersoll-Ross (CIR) model [2] is defined by the following SDE:

dyt:G(b*yf)dfﬁLU\/%th, (2)
with the following parameters

® Mean reversion speed: a > 0
® Mean reversion level: b > 0
e \/olatility: ¢ > 0

This diffusion is commonly used as a one-factor short rate model in
mathematical finance for modelling interest rates and volatilities [5].

Note the ODEs, % =a(b—y)and % = o0,/y, can be solved analytically!
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A motivating example: the CIR Model
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Figure: Sample paths of the CIR model witha=b=1and o = 2.
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A motivating example: the CIR Model
Lie-Trotter splitting

Y = Drift(Ya, h) = e @Y, + b(1 — e~),

Yny1 := Noise( Y(l) Wp) = (\/>+ UWn) ;

where h > 0 denotes the step size and Wy, := W;,,, — W;, ~ N(0, h)
is the increment of the Brownian motion. This has O(h) convergence.

Strang splitting
y(W .— Drift(Yn, 1h),
v .= Noise (Y ", W,),
. 1
Y1 = Dr|ft(y,§2), 5h),

has O(h) strong convergence, but O(h?) weak convergence (see [6]).

James Foster (University of Bath) High order splitting methods for SDEs 23 June 2025



Strang splitting as a piecewise linear path

More generally, we can define a Strang splitting for Stratonovich SDEs as

d
1 ; 1
fons = exp (31000 exp ( Sewh) e (3100) i
where exp(V)x is the solution z(1) at u = 1 of z/ = V(z) with z(0) = x.

Key idea: This is just solving (1) with the Brownian motion {(t, W) }+>0,
replaced by the following piecewise linear path X = {(X7,X¥)} in R4,

A
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Stochastic Taylor expansion

Informal Theorem (Taylor expansion for additive noise SDES)
Let y be the unique solution to (1), with g(y) = o € R. Then fors < t,

t

t t
Vi=yet / f(ys) du+ / (fV) — f(ys)) du + / oo dW,,

5

=ys +f(ys)(t—5) //f OdyvdU‘FUWsta
)dV+aode

i t
Ve =5 + 105 A+ oW +F(1) o / Weywdu+ 3 (5) f(ys)h®

1 t
+3f"0)0% | Weu)?du+ Ry,

S

whereh=t—s and Ws = W, — Ws.
In addition, the L2 norm of the remainder Rs ; is IE[(RSJ)Q]I/2 = O(h%).
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A path-based approach to splitting methods

Informal Theorem (Stochastic Taylor expansion [7, Thm 5.6.1])
The solution of the SDE (1) can be expressed as

d . d t .
Vi~ Vs + f(Vs) h‘f‘E gi(ys) Wslt+ § ")/Ws[,uodWZz 3)
/—1 °

+ () (“third" iterated integrals of {t, W;})

+ (--+)(“fourth” iterated integrals of W),

where h=t—s and Ws, := W, — Ws.

Observation from rough path theory

The Taylor expansion (3) can be extended beyond Brownian motion.
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A path-based approach to splitting methods
By replacing (t, W;) with a path X = (X7, X%) : [0,1] — R*9, we obtain

d .
dYe = f(Ye) dX7 + Y gV d(X¢)" )

=1

Informal Theorem (Rough Taylor expansion [4, Proposition 3.2])

The solution of the controlled differential equation (4) is expressible as
d d

. 1 . i
Vi~ Yo+ fYO)XT + Y gilvo) () + Y (---)/0 (X)) d(x)

i=1 Lj=1
1 1
+(...)/O X;udX;Jr(...)/o XTaxe + () (X))
+ (.--)(“third” iterated integrals of {XT,X“’})

+ (--+) (“fourth” iterated integrals of X*).
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A path-based approach to splitting methods

For Y to accurately approximate y, we will construct the path X so that

Xl = (h7 WS,Z‘) y

1 t
/ X;u dX;— - / Ws’u du,
0 5

E[/Ol (xtw)de;} :E—/ST(WM)Qdu].

Two examples of such piecewise linear paths X are illustrated below:

1.2 0.5
—Brownian path —Brownian path

' —Piecewise linear approximation o —Piecewise linear approximation
0.8
0.6
0.4
0.2

0

-0.2

-0.4

o 0.5 1
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Establishing moment bounds for the approximation

Key assumption (Brownian-like scaling)

Let X = (X7, X“)T: [0,1] — R'*9 be a piecewise linear path with m € N

components of a.s. finite length. Suppose each piece, X;, r, ,, satisfies

® X7 is deterministic and scales with the step size h, i.e. X i

= o(h)

e Even moments of X scale with h, i.e. E[||X . ,[1*] = O(h*)

Theorem (Moment bounds for the system (4) driven by X)

Suppose that E[||Yo||*] < oo and the vector fields f, g have linear growth:
IfNI < CA+NYID,  lgMIl < Ca+ (YD),
with E[exp (16C [, |dXu|)] < . Then there exists C so that for r € [0,1]

E[||Y; - Yoll] < Ch*(1 +E[|IYo*])- (5)
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Main result

Theorem (Convergence of path-based splitting [4, Thm 3.9])
Consider the Stratonovich SDE on [0, T],

d
dyr = fly) dt + > gilye) o AWy, (6)
i=1
where f € CZ,(R®), g € CP,,(R®) have Lipschitz continuous derivatives
and
g8ingy) =g &), VyeR® (7)

Let ¢ be a map on the space of continuous R'*+9-valued paths such that
X = o({(u, Wy)}ueps,q) is a piecewise linear path on [0, 1] which satisfies

Xo,1 = (h, Ws 1), fol Xg, dX7 = fst Ws., du, o
E[ i (X§)®2dX7] = $h’Iy,  “Brownian-like scaling”,

almost surely, where “Brownian-like scaling” refers to the previous slide.
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Main result

Theorem (Convergence of path-based splitting [4, Thm 3.9])
We define a numerical solution Y by Yy := yo and for n € {0,---,N — 1},

Var1 = exp (f(IXT, + 80X, ) - X (FOXG 1, +ECIXEr, ) Yoy ©)

where each piecewise linear path X has m joints at {r; < --- < rm} and
is defined by {(t, Wt) }te[tn,tn,1] USING a Step size of h = % with t, := nh.
In (9), exp(V)x is the solution at time u = 1 of
7' =V(2),
z(0) = x.

Then there exists constants Cy, hmax > 0, not depending on N, such that

1
E[||Yn — y1,l3]% < Cyhz, (10)
forne{1,--- N}, provided that h < hmax.
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Generating Brownian increments and integrals

Definition (Space-time Lévy area of Brownian motion)
We define (rescaled) space-time Lévy area of W over an interval [s, t] as

I 1
Hsf::—/ Wsudu——Wst, (Whel’e h:t_s)
) h s ) 2 )
|:| :hHs,t
Wi

Ws

I T
N t

Theorem (Brownian increments and space-time Lévy areas [8])

The vectors Ws s ~ N'(0, hlq) and Hs s ~ N(0, £hl4) are independent.
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A higher order Strang splitting

We replace the Brownian motion with this piecewise linear path in R:

w~
1 th+1 E
E X)?2dt|=E f W,)? dt Pl
[J, o ae | =] [ Toorar T
X v
A
P
EEWn+\/§Hn
v
3-3 3 3-+3
h £h h
6 3 6

James Foster (University of Bath) High order splitting methods for SDEs 23 June 2025 16/27



Example: CIR Model

In Stratonovich form, the CIR model (2) becomes

dy: = a(b — y)dt + ov/y; o dW,, (11)
where b := b — L &2, Thus, our splitting requires o2 < 4ab and becomes

ahY +b(1—e Gﬁah)’

Y,gl): e
o/l 2
= < Yé”*g(zwﬁﬂ”"))’

Y/§3) — e‘?ahY( )+ b( ?ah)7
o/l 2
Y/§4) = ( Yr§3) + §<§Wn - \/§Hn > )

,\/7 ~
Vorri=e o My 4 h(1—e
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Example: CIR Model (all parameters set to 1)

8
# Higher order splitting y=1.39x+ 1.46
7 @ Ninomiya-Victoir (2008)
6 A Drift-Implicit Euler (2005)
— Milstein's method (1974) 00k +0.73
6 5 + Euler-Maruyama (1955) y=1.00x+0.
= _ - -2 y=100x+0.55
T g4 - —’?’— """""" y=1.01x+0.42
N s CEC
e e P SR orre
= 3 __=eo=
b% I T 4+ y=0.51x+0.57
© 2 P =
- - _+ . —
o T T =
! = -+
1T
0
1 15 2 25 3 35 4 45

- logyo(step size)

Table: Estimated time to produce 10° paths with a RMSE of 1073 (seconds)

Splitting | Ninomiya-Victoir | Drift-Implicit Euler | Milstein | Euler
0.27 1.99 4.17 3.69 490
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Example: Underdamped Langevin Dynamics

The underdamped Langevin diffusion (ULD) is a model for molecular
dynamics and is given by the stochastic differential equation (SDE):

dXt =Vt dt,

de = =YVt dt — Vf(Xt) dt + AV 2’}/ th,

(13)

where

e x,v e R? will represent the position and momentum of a particle.
e f:RY - R is a scalar potential that the particle moves around in.
® ~ > 0 isthe friction coefficient (we will use v = 1).

o W= (W - W9 isad-dimensional Brownian motion,

Wi — WL~ N(0,t—s).
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Example: Underdamped Langevin Dynamics

“ULD = Newton’s second law + frictional forces + stochastic forces”
dXt =Vt df,

th:—’}/tht — Vf(Xt)df + \/2’7de,
—— —— N——_———

friction gradient of the noise
potential / target

Under mild assumptions on f, the SDE admits a unique strong solution

that is ergodic with stationary distribution 7 (x, v) < e/ e=zI"I* [10].

So, as well as physics [11], ULD can be applied to (high-dimensional)
sampling problems in data science [12], as simulating ULD for long
times produces approximate samples from the target distribution:

7(x) x e,

Thus, solving (13) gives a Markov Chain Monte Carlo (MCMC)
algorithm.
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Underdamped Langevin Dynamics, f(x) = (x* —4)*

0.6 — n(x)

Bl Samples
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Example: Underdamped Langevin Dynamics

For simulating this specific SDE, we use another piecewise linear path:

A )
—H, + 6K,
W, — 12K,
H, + 6K,
h
where K, ~ J\/(O, %h[d) is independent of (W,, Hy) and defined as

1 [t t—t 1
Kn = hz/tn <thf - hern> <2h - (t - tn)) dt
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Example: Underdamped Langevin Dynamics

—— Brownian motion with W,, = 0and H,, =0
/\n\ Ml\ —— Cubic polynomial approximation

A

Aj,u AM m v
W

x K,

Figure: Space-time-time Lévy area gives the “skew” of the Brownian path [13].
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Example: Underdamped Langevin Dynamics

Remarkably, due to ULD’s structure, this has third order convergence!

7.5 q
+ SORT method ¥y =2.99x-2.00
.  UBU splitting (2002, 2021)
(- 51
o 4 Randomized midpoint (2019) - y=2.01x-1.42
o OBABO splitting (2007) ) ot .. y=153x-129
N 2.5 q | + Exponential Euler (2018) T e s y=1.03x-0.50
= kT ey =131x-1.85
9 -t PRSI
o IRt 4
ap
S o0 e
|
T "
-2.5 T T T T T T |
0 0.5 1 1.5 2 25 3

- log,, (step size)

Figure: Estimated convergence rates for different ULD numerical methods [4].
Here, the L2 error (or root mean square error) is estimated at time T = 1000.

SORT? is a discretisation of the SDE driven by the new piecewise linear path.

2shifted ODE with Runge-Kutta Three
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Example: Underdamped Langevin Dynamics

An O(h?) error bound (that is independent of T) was shown for the ODE
splitting [13]. But we were unable to extend this to the SORT method.

Recently, we made progress on QUICSORT? (to appear on arxiv soon):

VD = Vo 4 /27 (Hn + 6Kn),

1 e—avh e~ 4 gvh— 1
X1 = + v 4 7 c
v ~v2h

ns

1
_ ,—b~h _ ,—37h
1—e 1 1—-e3

—bvh
e + byh — 1
X3 = o + v V(D) h+ —— T,
Y Y v2h
—~h

@) _ gy (D) _ L mbungr( (DY _ L mavigp(x (@Y, Lo

V() = ey 5¢ vi(x)n 5¢ Vi(x$P)h + G-
1—e ™ oy 1-e " (1) 1-e" " (2) e M tah—1

Mg =Ko+ ———— V) - - v ) - va(xn )+ —m

Vog1 = VD = /27 (Hn — 6Kn),

where a = % b= % and Cp = 27 (Wh — 12Kp).

3QUadrature Inspired and Contractive Shifted ODE with Runge-Kutta Three
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Example: Underdamped Langevin Dynamics

10t —— NUTS —— NUTS 10° —— NUTS
usy 10t —— uBU —— uBU
— QUICSORT —— QUICSORT . —— QUICSORT
§ 10° . 5 10
5 5 10 g
g g 2
g o- g g
10-!
£ g 10 g
3 i 3
> > s
8102 g 8
g1 210 H
& & &
-
10 103
0 250 500 750 1000 1250 1500 1750 2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000
— NUTS — NUTS — NUTS
| usu 10 —— uBu —— uBU
| QUICSORT —— QUICSORT 109 —— QUICSORT
. | :
£ G
~ 10t o
5 £
] 2
2 B
g || g
2 \ H
100

0 250 500 750 1000 1250 1500 1750
Number of function evaluations

(a) Waveform (d = 22)

2000 4000 6000 8000 10000 12000
Number of function evaluations

(b) Splice (d = 61)

2000 4000 6000 8000
Number of function evaluations

(c) Isolet (d = 617)

10000

Figure: Here, we performed Bayesian logistic regression across 14 datasets,
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with the ULD methods achieving faster convergence compared to the popular
“No U-Turn Sampler” (NUTS) [18] in the two highest dimensional datasets.
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Conclusion and future work

Conclusion
e Path-based framework for developing high order splitting methods
e Effective for the CIR model and underdamped Langevin dynamics

Future work

100 — NuUTS | — NuUTS 10 — NUTS
QUICSORT 10 QUICSORT | QUICSORT
§ 100 —— QUICSORT_ADAP 5 \ —— QUICSORT_ADAP 5 100 —— QUICSORT_ADAP
§ 5 100 \ 5
g g g
£10m e 5 2 10!
510 Eion g
s s 3
5 > S 100
g10 2102 g
& bl &
- 107!
10 107 \
-
1000 2000 3000 4000 5000 6000 7000 2000 4000 6000 8000 10000 12600 1000 2000 3000 4000 5000 6000
Number of function evaluations Number of function evaluations Number of function evaluations
(a) Flare Solar (d = 10) (b) Splice (d = 61) (c) Isolet (d = 617)

Figure: The QUICSORT method was recently implemented in Diffrax [19, 20],
which is a high-performance Python package for simulating ODEs and SDEs.
As a consequence, we can now perform QUICSORT with adaptive step sizes.
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https://docs.kidger.site/diffrax/examples/underdamped_langevin_example/

Thank you
for your attention!

and, if you are interested, our paper can be found at

J. Foster, G. dos Reis and C. Strange, High order splitting methods for SDEs
satisfying a commutativity condition, SIAM Journal on Numerical Analysis,
2024. (Preprint is available at arxiv.org/abs/2210.17543).

Python code for our ongoing research into Langevin MCMC is also available at

github.com/andyElking/ThirdOrderLMC
github.com/andyElking/Single-seed_BrownianMotion (adaptive step sizes)


https://arxiv.org/abs/2210.17543
https://github.com/andyElking/ThirdOrderLMC
https://github.com/andyElking/Single-seed_BrownianMotion
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Additional information on the CIR example

Table: Computer time to simulate 100,000 paths with 100 steps (seconds)

Splitting | Ninomiya-Victoir | Drift-Implicit Euler | Milstein | Euler
2.13 1.07 1.42 1.01 0.86

Since LW, + V/3H, and W, — v/3H, are independent, we can prove

Theorem (High order weak approximation of the CIR model)
The numerical solution given by (12) has the following moments:

E[Ynt1|Ya] = 7Y, + b(1 — e79) + 0(h),

2 b 2
Var(Yn+1|Yn) = g (e—ah o e—2ah) Y, + %(1 - —ah) + O(h5)

Ignoring the O(h%) remainder terms, the above formulae are precisely
the conditional mean and variance of the CIR model (started at Y,).
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Example: FitzHugh-Nagumo Model

The stochastic FitzHugh-Nagumo (FHN) model [21] is given by the SDE:

v Ly, —v3—U 0
V) = (Ve VIS (o dW. (14)
Ut Wi = Ut + B 0 o9

with the following parameters

e Time scale separation: € > 0
e Position parameter of an excitation: g > 0
e Duration parameter of an excitation: v > 0
e Noise parameters: o1,09 > 0

The FHN model is used to describe the firing activity of single neurons.
The first component V describes the membrane voltage of the neuron,
whilst the second component U can be viewed as a recovery variable.
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Example: FitzHugh-Nagumo Model

We replace each Brownian motion by the following piecewise linear path:

N
w~
51W Y
i 2 k k
T+a :
______________________________________________________ v
A
b« |
1
1 [22%% :EWk-l'Hk
fxtzdtzlE[ Wtzdt|Wk,Hk,nk] !
0 ty i
L] L] \:/ >
1
Zh h
2

(n, € {—1,1} isindependent and gives the half-interval with largest H)
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FitzHugh-Nagumo Model (parameters setto 1, T = 5)

The system cannot be exactly solved along the “horizontal” pieces, so
we apply a further Strang splitting to approximate the resulting ODEs.

25
® Higher order splittin
g pitting y=1.51x + 2.90
20 A Strang splitting (Buckwar et al. (2022))
m Tamed Euler (Hutzenthaler et al. (2012))
s
23 - Y=101x+018
- == T _.my=106x-162
& 10 SRR S g v
n e m AT T e T
--- " —: -------- N
5 go-=-=""777
0
6 7 8 9 10 11 12

- log,(step size)

With 640 steps, we're as accurate as Strang splitting with 10,240 steps!
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Example: Additive-noise SDEs

In the paper, we also consider a stochastic FitzHugh-Nagumo model
and additive-noise SDEs:

dyr = f(yr) dt + odW,

where f : R — R€ denotes a vector field on R¢ and o € R¢*? is a matrix.
For a general additive-noise SDE, we propose a path with three pieces:

—W, + H. E 1 tn1
2T [EUX?dt]:]E[ Wtzdt]
0 t

n
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Example: Additive-noise SDEs
We need to discretize the “diagonal ODE” defined by the middle piece.

Runge-Kutta methods may be a good choice of solver, but which one?

1 1 2 ®2 .
/ (A+BH®?dt = ZA®2 + Z(A + §B> = Ralston’s method is ideal!
0

(i.e.fis evaluated at 0 and 2)
Thus, we propose

Yfgl) = Yn + U(;Wn + Hn + Cn>7
1 1y, 2 1
Vi = v+ S (A0 - 20Ca ).
1 3
Vadh =Y 4+ A0+ JA(Y ) )h = 20C,

1
Yn_l,_]_ = Y{E?l + O-(QWH — Hn "‘ Cn) .

James Foster (University of Bath)
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Example: Additive-noise SDEs

In our experiment, we compare against Rofsler’s strong 1.5 scheme [?]

3 3
f(Yn)h—|— oWn + = oHn,

Y+%:Yn+ 4
2
3

n

Yng1:=Yn+ f(Yn)h + 3

4
5 f(Vopa)h + oW,

Note that these methods have essentially the same computational cost
(two Gaussian random variables, two vector field evaluations per step).
If we set C, = 0 and solve the ODE with Euler instead of Ralston, we get
1
Yn+1 = Yn + f(Yn + §O—Wn + UHn)h + O_Wn.

We expect this to be more accurate than the Euler-Maruyama method
(though still first order convergent).
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Example: Additive-noise SDEs
We test these methods on the following scalar anharmonic oscillator:
dy: = sin(y;) dt + dW, Yo=1, T=1).

All methods exhibit their expected strong and weak convergence rates,
though the proposed schemes are more accurate (in line with theory).

1

——a— Shifted Ralston

g / SRA1 (RoBler, 2010)
£ o075 — & — Shifted Euler
~ / Euler-Maruyama
-
G .
2 05 -
B T~
o Swe 0.38 (2.d.p)
it S N Y
0.25
1 10 100 1000

Number of steps

||fsr Ws%udu_E[f; Ws%udu| Ws,t:Hs,t,ns,t]
||fst WSQ,udU—%(%th,z—i-hHs,t

”2 ) 7 5 \3
o O = (5 - 2)2 ~0.37 (2.d.p)
L2(P)
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